Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Pharmacol ; 99: 125-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467479

RESUMO

Use of amphetamines during adolescence, a critical period of brain development and reorganization, may lead to particularly adverse outcomes that are long-lasting. Similarly, female users may be uniquely vulnerable to certain aspects of drug use. A recognition of the role of use during adolescence and sex on outcomes of amphetamine and methamphetamine exposure are of critical importance in understanding and treating substance use disorders. This chapter highlights what human research, which has been largely epidemiological, suggests about sex and age differences in drug use patterns and outcomes. We also discuss work in laboratory animals that has typically utilized rats or mice exposed to drugs in a non-contingent manner (i.e., involuntarily) or through volitional self-administration. Lastly, we draw attention to the fact that advancing our understanding of the effects of amphetamine and methamphetamine use, the development of problematic drug taking, and the mechanisms that contribute to relapse will require an emphasis on inclusion of age and sex as moderating factors in future studies.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Metanfetamina , Transtornos Relacionados ao Uso de Substâncias , Adolescente , Feminino , Humanos , Ratos , Camundongos , Animais , Anfetaminas/efeitos adversos , Metanfetamina/efeitos adversos , Anfetamina
2.
Dev Neurosci ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547851

RESUMO

INTRODUCTION: Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity and could influence the activity-dependent maturational process of these neurons. METHODS: In the present study, we used male and female Sprague Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (EA; 30-38 days old), late adolescence (LA; 40-48 days old), or young adulthood (60-68 days old). One day following exposure, effects of METH on PV cell and PNN expression were assessed using immunofluorescent labeling within the mPFC. RESULTS: METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences development of inhibitory circuits in the female mPFC. CONCLUSIONS: This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females.

3.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464016

RESUMO

Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity and could influence the activity-dependent maturational process of these neurons. In the present study, we used male and female Sprague Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (EA; 30-38 days old), late adolescence (LA; 40-48 days old), or young adulthood (60-68 days old). One day following exposure, effects of METH on PV cell and PNN expression were assessed using immunofluorescent labeling within the mPFC. METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences development of inhibitory circuits in the female mPFC. This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females.

4.
Neuropharmacology ; 242: 109765, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37863313

RESUMO

Significant exposure to alcohol or cannabis during adolescence can induce lasting disruptions of neuronal signaling in brain regions that are later to mature, such as the medial prefrontal cortex (mPFC). Considerably less is known about the effects of alcohol and cannabis co-use, despite its common occurrence. Here, we used male and female Long-Evans rats to investigate the effects of early-life exposure to ethanol, delta-9-tetrahydrocannabinol (THC), or their combination on high frequency stimulation (HFS)-induced plasticity in the prelimbic region of the mPFC. Animals were injected daily from postnatal days 30-45 with vehicle or THC (escalating doses, 3-20 mg/kg) and allowed to drink vehicle (0.1% saccharin) or 10% ethanol immediately after each injection. In vitro brain slice electrophysiology was then used to record population responses of layer V neurons following HFS in layer II/III after 3-4 weeks of abstinence. We found that THC exposure reduced body weight gains observed in ad libitum fed rats, and reduced intake of saccharin and ethanol. Compared to controls, there was a significant reduction in HFS-induced long-term depression (LTD) in rats exposed to either drug alone, and an absence of LTD in rats exposed to the drug combination. Bath application of indiplon or AR-A014418, which enhance GABAA receptor function or inhibit glycogen synthase kinase 3ß (GSK3ß), respectively, suggested the effects of ethanol, THC or their combination were due in part to lasting adaptations in GABA and GSK3ß signaling. These results suggest the potential for long-lasting adaptations in mPFC output following co-exposure to alcohol and THC.


Assuntos
Dronabinol , Alucinógenos , Ratos , Masculino , Feminino , Animais , Ratos Long-Evans , Dronabinol/farmacologia , Etanol/farmacologia , Glicogênio Sintase Quinase 3 beta , Sacarina , Córtex Pré-Frontal , Plasticidade Neuronal , Alucinógenos/farmacologia , Receptores de GABA-A/fisiologia , Agonistas de Receptores de Canabinoides/farmacologia
5.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37645740

RESUMO

Significant exposure to alcohol or cannabis during adolescence can induce lasting disruptions of neuronal signaling in brain regions that are later to mature, such as the medial prefrontal cortex (mPFC). Considerably less is known about the effects of alcohol and cannabis co-use, despite its common occurrence. Here, we used male and female Long-Evans rats to investigate the effects of early-life exposure to ethanol, delta-9-tetrahydrocannabinol (THC), or their combination on high frequency stimulation (HFS)-induced plasticity in the prelimbic region of the mPFC. Animals were injected daily from postnatal days 30 to 45 with vehicle or THC (escalating doses, 3-20 mg/kg) and allowed to drink vehicle (0.1% saccharin) or 10% ethanol immediately after each injection. In vitro brain slice electrophysiology was then used to record population responses of layer V neurons following HFS in layer II/III after 3-4 weeks of abstinence. We found that THC exposure reduced body weight gains observed in ad libitum fed rats, and reduced intake of saccharin and ethanol. Compared to controls, there was a significant reduction in HFS-induced long-term depression (LTD) in rats exposed to either drug alone, and an absence of LTD in rats exposed to the drug combination. Bath application of indiplon or AR-A014418, which enhance GABAA receptor function or inhibit glycogen synthase kinase 3ß (GSK3ß), respectively, suggested the effects of ethanol, THC or their combination were due in part to lasting adaptations in GABA and GSK3ß signaling. These results suggest the potential for long-lasting adaptations in mPFC output following co-exposure to alcohol and THC.

6.
Behav Brain Res ; 449: 114475, 2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-37146720

RESUMO

The increase in social acceptance and legalization of cannabis over the last several years is likely to increase the prevalence of its co-use with alcohol. In spite of this, the potential for effects unique to co-use of these drugs, especially in moderate doses, has been studied relatively infrequently. We addressed this in the current study using a laboratory rat model of voluntary drug intake. Periadolescent male and female Long-Evans rats were allowed to orally self-administer ethanol, Δ9-tetrahydrocannibinol (THC), both drugs, or their vehicle controls from postnatal day (P) 30 to P47. They were subsequently trained and tested on an instrumental behavior task that assesses attention, working memory and behavioral flexibility. Similar to previous work, consumption of THC reduced both ethanol and saccharin intake in both sexes. Blood samples taken 14 h following the final self-administration session revealed that females had higher levels of the THC metabolite THC-COOH. There were modest effects of THC on our delayed matching to position (DMTP) task, with females exhibiting reduced performance compared to their control group or male, drug using counterparts. However, there were no significant effects of co-use of ethanol or THC on DMTP performance, and drug effects were also not apparent in the reversal learning phase of the task when non-matching to position was required as the correct response. These findings are consistent with other published studies in rodent models showing that use of these drugs in low to moderate doses does not significantly impact memory or behavioral flexibility following a protracted abstinence period.


Assuntos
Alucinógenos , Memória de Curto Prazo , Ratos , Animais , Masculino , Feminino , Ratos Long-Evans , Dronabinol/farmacologia , Etanol/farmacologia , Alucinógenos/farmacologia
7.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778500

RESUMO

The increase in social acceptance and legalization of cannabis over the last several years is likely to increase the prevalence of its co-use with alcohol. In spite of this, the potential for effects unique to co-use of these drugs, especially in moderate doses, has been studied relatively infrequently. We addressed this in the current study using a laboratory rat model of voluntary drug intake. Periadolescent male and female Long-Evans rats were allowed to orally self-administer ethanol, Î" 9 -tetrahydrocannibinol (THC), both drugs, or their vehicle controls from postnatal day (P) 30 to P47. They were subsequently trained and tested on an instrumental behavior task that assesses attention, working memory and behavioral flexibility. Similar to previous work, consumption of THC reduced both ethanol and saccharin intake in both sexes. Blood samples taken 14h following the final self-administration session revealed that females had higher levels of the THC metabolite THC-COOH. There were modest effects of THC on our delayed matching to position (DMTP) task, with females exhibiting reduced performance compared to their control group or male, drug using counterparts. However, there were no significant effects of co-use of ethanol or THC on DMTP performance, and drug effects were also not apparent in the reversal learning phase of the task when non-matching to position was required as the correct response. These findings are consistent with other published studies in rodent models showing that use of these drugs in low to moderate doses does not significantly impact memory or behavioral flexibility following a protracted abstinence period.

9.
Behav Pharmacol ; 31(8): 748-758, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32925228

RESUMO

Previous work suggests adolescent rats have deficient extinction consolidation relative to adults. Although the mechanisms underlying this age difference are currently unknown, studies in adult rats have implicated GluN2B-containing N-methyl-d-aspartate (NMDA) receptor function in extinction consolidation of drug-associated memory. Importantly, GluN2B neurotransmission emerges during adolescent development, and drugs of abuse during adolescence may delay the development of extinction consolidation by disrupting the ontogeny of GluN2B function. Here, we trained Sprague-Dawley rats of both sexes to self-administer methamphetamine [METH, 0.1 mg/kg/infusion intravenous (i.v.)] beginning during adolescence [postnatal (P) day 41] or adulthood (P91). Rats were given short access (2 h) to self-administer METH in seven daily sessions followed by 14 sessions with long access (6 h). Subsequently, rats underwent four daily 30-minute extinction sessions with immediate postsession injections of either a GluN2B antagonist [Ro25-6981; 6 mg/kg, intraperitoneal (i.p.)] or a vehicle solution. After four daily 2-h extinction sessions, a priming injection (1 mg/kg METH, i.p.) was given prior to a final 2-h reinstatement session. During LgA, adolescent-onset rats earn more METH than adult-onset rats and display greater drug-loading behavior. Rats reduced their drug-seeking behavior across the extinction sessions, with no significant group differences. Rats reinstated drug-seeking following the METH-priming injection, with females displaying greater reinstatement than males. These results do not support our a priori hypothesis that adolescent-onset METH use disrupts the ontogeny of GluN2B transmission and contributes to age-of-onset differences in extinction of METH-seeking. However, our findings suggest that age-of-onset contributes to excessive METH-taking, while sex confers vulnerability to relapse to METH-seeking.


Assuntos
Extinção Psicológica/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Fenóis/farmacologia , Piperidinas/farmacologia , Fatores Etários , Transtornos Relacionados ao Uso de Anfetaminas/tratamento farmacológico , Animais , Condicionamento Operante/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Feminino , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Consolidação da Memória/fisiologia , Metanfetamina/efeitos adversos , Fenóis/metabolismo , Piperidinas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Autoadministração , Fatores Sexuais
10.
Pharmacol Biochem Behav ; 198: 173016, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32828971

RESUMO

Adolescent use of amphetamine and its closely related, methylated version methamphetamine, is alarmingly high in those who use drugs for nonmedical purposes. This raises serious concerns about the potential for this drug use to have a long-lasting, detrimental impact on the normal development of the brain and behavior that is ongoing during adolescence. In this review, we explore recent findings from both human and laboratory animal studies that investigate the consequences of amphetamine and methamphetamine exposure during this stage of life. We highlight studies that assess sex differences in adolescence, as well as those that are designed specifically to address the potential unique effects of adolescent exposure by including groups at other life stages (typically young adulthood). We consider epidemiological studies on age and sex as vulnerability factors for developing problems with the use of amphetamines, as well as human and animal laboratory studies that tap into age differences in use, its short-term effects on behavior, and the long-lasting consequences of this exposure on cognition. We also focus on studies of drug effects in the prefrontal cortex, which is known to be critically important for cognition and is among the later maturing brain regions. Finally, we discuss important issues that should be addressed in future studies so that the field can further our understanding of the mechanisms underlying adolescent use of amphetamines and its outcomes on the developing brain and behavior.


Assuntos
Desenvolvimento do Adolescente/efeitos dos fármacos , Anfetamina/efeitos adversos , Cognição/efeitos dos fármacos , Metanfetamina/efeitos adversos , Córtex Pré-Frontal/efeitos dos fármacos , Adolescente , Comportamento do Adolescente/efeitos dos fármacos , Adulto , Fatores Etários , Anfetamina/farmacologia , Transtornos Relacionados ao Uso de Anfetaminas/epidemiologia , Animais , Encéfalo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Estimulantes do Sistema Nervoso Central/farmacologia , Criança , Feminino , Humanos , Masculino , Metanfetamina/farmacologia , Fatores Sexuais , Adulto Jovem
11.
Behav Brain Res ; 390: 112659, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32437887

RESUMO

Individuals who begin drug use during early adolescence experience more adverse consequences compared to those initiating later, especially if they are female. The mechanisms for these age and gender differences remain obscure, but studies in rodents suggest that psychostimulants may disrupt the normal ontogeny of dopamine and glutamate systems in the prefrontal cortex (PFC). Here, we studied Sprague-Dawley rats of both sexes who began methamphetamine (METH, i.v.) self-administration in adolescence (postnatal [P] day 41) or adulthood (P91). Rats received seven daily 2-h self-administration sessions with METH or saccharin as the reinforcer, followed by 14 daily long access (LgA; 6 h) sessions. After 7 and 14 days of abstinence, novel object (NOR) or object-in-place (OiP) recognition was assessed. PFC and nucleus accumbens were collected 7 days after the final cognitive test and NMDA receptor subunits and dopamine D1 receptor expression was measured. We found that during LgA sessions, adolescent-onset rats escalated METH intake more rapidly than adult-onset rats, with adolescent-onset females earning the most infusions. Adolescent-onset rats with a history of METH self-administration exhibited modest deficits in OiP compared to their adult-onset counterparts, but there was no sex difference and self-administration groups did not differ from naïve control rats. All rats displayed intact novel object recognition memory. We found no group differences in D1 and NMDA receptor expression, suggesting no long-lasting alteration of ontogenetic expression profiles. Our findings suggest that adolescent-onset drug use is more likely to lead to compulsive-like patterns of drug-taking and modest dysfunction in PFC-dependent cognition.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Feminino , Masculino , Metanfetamina/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores Sexuais , Transtornos Relacionados ao Uso de Substâncias/complicações
12.
Addict Biol ; 24(2): 193-205, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29210144

RESUMO

Impulsivity is a personality trait associated with a heightened risk for drug use and other psychiatric conditions. Because impulsivity-related disorders typically emerge during adolescence, there has been interest in exploring methods for identifying adolescents that will be at risk to develop substance use disorders in adulthood. Here, we used a rodent model to assess inhibitory control (impulsive action) and impulsive decision making (impulsive choice) during adolescence (43-50 days old) or adulthood (93-100 days old) and then examined the impact of development on these impulsivity traits by re-testing rats 50 days later. Impulsive action was not stable from adolescence to adulthood in male rats and was lowest in adult male rats, relative to adolescents and female rats. Impulsive choice was stable across development and unaffected by age or sex. Next, we examined the connection between our model of impulsivity and two measures relevant to substance abuse research: the initiation of voluntary alcohol drinking and dopamine D2 receptor (D2 R) expression in the prelimbic prefrontal cortex. Consumption of saccharin-sweetened ethanol during 30-minute sessions in adulthood was associated with adolescent, but not adult, impulsive action, particularly in male rats. Prelimbic D2 R expression was reduced in individuals with high levels of impulsive choice, and this relationship appeared to be strongest among female rats. The results of this study demonstrate that impulsive choice, along with its connection to D2 R expression, is relatively unchanged by the process of development. For impulsive action, however, individual levels of impulsivity during adolescence predict drinking in adulthood despite changes in the measure during development.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Comportamento Impulsivo/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Análise de Variância , Animais , Comportamento de Escolha/efeitos dos fármacos , Feminino , Sistema Límbico/metabolismo , Masculino , Caracteres Sexuais
13.
Neuropharmacology ; 141: 158-166, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30165079

RESUMO

Recent studies in rats suggest that high frequency stimulation (HFS) in the ventral hippocampus induces long-term depression (LTD) in the deep layer of the medial prefrontal cortex (mPFC), but only after the prefrontal GABA system has sufficiently developed during early-to mid-adolescence. It is not clear whether this LTD is specific to the hippocampus-mPFC circuit or is instead an intrinsitc regulatory mechanism for the developed mPFC neuro-network. The potential mechanisms underlying this HFS-induced LTD are also largely unknown. In the current study, naïve male Sprague Dawley rats were sacrificed during peri-adolescence or young adulthood for in vitro extracellular recording to determine if HFS delivered in the prelimbic cortex (PLC) would induce LTD in an age-dependent manner and if dopamine receptors are involved in the expression of this LTD. We found four trains of stimulation at 50 Hz induced an LTD in the PFC of adult, but not peri-adolescent, rats. This LTD required intact GABAA receptor functioning and could also be blocked by dopamine D1 or D2 receptor antagonists. Bath application of selective D1 or D2 receptor agonists produced a significant facilitation or suppression in the field potential, respectively, and these effects were only observed in the adult PLC. Furthermore, neither D1 nor D2 stimualtion prior to HFS was able to facilitate LTD in the peri-adolescent PLC. Together, these results suggest dopamine receptor functionality in the PLC increases during adolescent development and it plays an important role in this late-maturating form of plasticity.


Assuntos
Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Fatores Etários , Animais , Agonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Estimulação Elétrica , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Ratos , Receptores de GABA-A/fisiologia
14.
Behav Brain Res ; 349: 16-24, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29715538

RESUMO

Adolescents and females experience worse outcomes of drug use compared to adults and males. This could result from age- and sex-specific consequences of drug exposure on brain function and cognitive behavior. In the current study, we examined whether a history of intravenous methamphetamine (METH) self-administration impacted cognitive flexibility and 5-HT2CR localization in the orbitofrontal cortex (OFC) in an age- and sex-dependent manner. Strategy shifting was assessed in male and female Sprague-Dawley rats that had self-administered METH (0.08 mg/kg/inf) or received non-contingent infusions of saline during periadolescence or young adulthood. After all rats reached adulthood, they were tested in an operant strategy shifting task and their brains were subsequently analyzed using immunofluorescence to quantify co-localization of 5-HT2C receptors with parvalbumin interneurons in the OFC. We found that adolescent-onset females were the only group impaired during discrimination and reversal learning, but they did not exhibit changes in localization of 5-HT2C receptors. In contrast, adult-onset males exhibited a significant increase in co-localization of 5-HT2C receptors within parvalbumin interneurons in the left hemisphere of the OFC. These studies reveal that age and sex differences in drug-induced deficits in reversal learning and 5-HT2CR co-localization with parvalbumin interneurons are dissociable and can manifest independently. In addition, these data highlight the potential for certain treatment approaches to be more suitable in some populations compared to others, such as alleviating drug-induced cognitive deficits as a focus for treatment in adolescent females.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Estimulantes do Sistema Nervoso Central/administração & dosagem , Função Executiva/efeitos dos fármacos , Metanfetamina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/metabolismo , Administração Intravesical , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Transtornos Relacionados ao Uso de Anfetaminas/patologia , Transtornos Relacionados ao Uso de Anfetaminas/psicologia , Animais , Discriminação Psicológica/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Função Executiva/fisiologia , Feminino , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Ratos Sprague-Dawley , Reversão de Aprendizagem/efeitos dos fármacos , Reversão de Aprendizagem/fisiologia , Autoadministração , Caracteres Sexuais , Maturidade Sexual
15.
J Exp Anal Behav ; 110(1): 54-62, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29781150

RESUMO

Rodent models have been especially useful for investigating adolescent ethanol exposure. However, there is a paucity of studies examining sex differences in behavioral intoxication from adolescent ethanol drinking. Here, we used an ethanol drinking model to investigate if adolescent rats of both sexes readily drink ethanol to measurable behavioral intoxication, indicated by increased impulsive action and motor incoordination. Beginning on postnatal day (P) 28, male and female Long-Evans rats were given 30-min access to a solution of sucrose (20%) or sweetened ethanol (20% sucrose +15% ethanol) every other day until P60 and once after 2 weeks of forced abstinence (on P75). On alternate (nondrinking) days, rats were reinforced with a food pellet for making a cued nosepoke response. Beginning on P56, rats were tested in this task after drinking sessions to assess ethanol-induced changes in impulsive action, defined as premature responding prior to cue presentation. Motor coordination was assessed before and after drinking sessions using an incline plane test. Adolescent male and female rats readily consumed ethanol to behavioral intoxication, measured as reduced motor coordination. Following forced abstinence, females displayed greater ethanol-induced impulsive action. These studies provide evidence for sex differences in behavioral intoxication following adolescent ethanol drinking.


Assuntos
Consumo de Bebidas Alcoólicas/epidemiologia , Intoxicação Alcoólica/epidemiologia , Consumo de Bebidas Alcoólicas/psicologia , Intoxicação Alcoólica/psicologia , Animais , Feminino , Masculino , Modelos Biológicos , Ratos , Ratos Long-Evans
16.
Brain Res ; 1694: 111-120, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29792867

RESUMO

Repeated exposure to psychostimulants during adolescence produces long-lasting changes in behavior that may be mediated by disrupted development of the mesocorticolimbic dopamine system. Here, we tested this hypothesis by assessing the effects of amphetamine (AMPH) and dopamine receptor-selective drugs on behavior and neuron activity in the prelimbic region of the medial prefrontal cortex (PFC). Adolescent male, Sprague-Dawley rats were given saline or 3 mg/kg AMPH between postnatal day (P) 27 and P45. In Experiment 1, locomotor behavior was assessed during adulthood following challenges with a dopamine D1 (SKF 82958) or D2 (quinpirole) receptor-selective agonist. In Experiment 2, pre-exposed rats were challenged during adulthood with AMPH and a D1 (SKF 83566) or D2 (eticlopride) receptor-selective antagonist. In Experiment 3, the activity of putative pyramidal cells in the prelimbic cortex was recorded as rats behaved in an open-field arena before and after challenge injections with AMPH and one of the antagonists. We found that compared to controls, adolescent pre-exposed rats were more sensitive to the stimulant effects of AMPH and the dopamine receptor agonists, as well as to the ability of the antagonists to reverse AMPH-induced stereotypy. Prelimbic neurons from AMPH pre-exposed rats were also more likely to respond to an AMPH challenge in adulthood, primarily by reducing their activity, and the antagonists reversed these effects. Our results suggest that exposure to AMPH during adolescence leads to enduring adaptations in the mesocorticolimbic dopamine system that likely mediate heightened response to the drug during adulthood.


Assuntos
Anfetamina/farmacologia , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Envelhecimento , Animais , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Comportamento Estereotipado/efeitos dos fármacos
17.
Behav Neurosci ; 132(2): 75-87, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29481101

RESUMO

Compared with adults, adolescent behavior is often characterized by reduced behavioral flexibility, increased sensitivity to reward, and increased likelihood to take risks. These traits, which have been hypothesized to confer heightened vulnerability to psychopathologies such as substance use disorders (SUDs), have been the focus of studies in laboratory animal models that seek to understand their neural underpinnings. However, rodent studies to date have typically used only males and have adopted standard methodological practices (e.g., weight loss inducing food restriction) that are likely to have a disparate impact on adolescents compared with adults. Here, we used adolescent and adult Sprague-Dawley rats of both sexes to study instrumental behavior tasks that assess behavioral flexibility (strategy shifting and reversal learning; Experiment 1), sensitivity to reward value (outcome devaluation; Experiment 2), and risky decision making (probability discounting; Experiment 3). In Experiment 1, we found that adolescents were faster to acquire reversal learning than adults but there were no differences in strategy shifting. In Experiments 2 and 3, adolescents and adults were equally sensitive to changes in reward value and exhibited similar reductions in preference for a large reward when reinforcement probability was decreased. However, adolescents responded more efficiently and earned reinforcers at a higher rate than their same-sex, adult counterparts. Together, these findings provide only limited support for the existence of an "adolescent-typical" phenotype in Sprague-Dawley rats and instead suggest that age differences in the expression of these behaviors may depend on conditions such as pubertal status and motivational state. (PsycINFO Database Record


Assuntos
Envelhecimento/psicologia , Tomada de Decisões/fisiologia , Reversão de Aprendizagem/fisiologia , Recompensa , Assunção de Riscos , Caracteres Sexuais , Envelhecimento/fisiologia , Animais , Condicionamento Operante/fisiologia , Feminino , Masculino , Ratos Sprague-Dawley , Maturidade Sexual
18.
Psychopharmacology (Berl) ; 235(3): 861-871, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29197983

RESUMO

RATIONALE: Adolescence is a period of considerable development of brain and behavior and is the time during which most drug use is initiated. OBJECTIVE: Age-dependent differences in motivated behaviors may be one of the factors that contribute to heightened vulnerability to developing substance use disorders, so we sought to compare age differences in methamphetamine (METH) and saccharin seeking. METHODS: Beginning during adolescence or adulthood, male and female Sprague-Dawley rats were trained to self-administer 0.1% saccharin (via liquid dipper cup) or intravenous METH at one of three doses (0.02, 0.05, 0.08 mg/kg/inf) under increasing fixed ratio schedules of reinforcement. Subsequently, responding for METH (0.02, 0.05, 0.08, or 0.1 mg/kg/inf) under progressive ratio response requirements was assessed in rats that acquired METH self-administration at the highest dose (0.08 mg/kg/inf). RESULTS: We found that adult-onset rats acquired METH self-administration more readily and exhibited higher motivation compared to adolescent-onset rats, although there were no differences in METH intake during acquisition. Adult rats also acquired saccharin self-administration more readily, but in contrast to METH, there were age and sex differences in saccharin intake driven by high levels of responding in adult females. CONCLUSIONS: These findings challenge the prevailing notion that adolescents are hypersensitive to reward and instead raise questions about the potential role of methodological factors on which rodent studies often differ.


Assuntos
Estimulantes do Sistema Nervoso Central , Comportamento de Procura de Droga/fisiologia , Metanfetamina , Motivação/efeitos dos fármacos , Reforço Psicológico , Sacarina , Edulcorantes , Fatores Etários , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Feminino , Masculino , Metanfetamina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Sacarina/administração & dosagem , Autoadministração/psicologia , Caracteres Sexuais , Edulcorantes/administração & dosagem
19.
J Neurosci ; 37(45): 10855-10866, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118215

RESUMO

Adolescence is a time of significant neural and behavioral change with remarkable development in social, emotional, and cognitive skills. It is also a time of increased exploration and risk-taking (e.g., drug use). Many of these changes are thought to be the result of increased reward-value coupled with an underdeveloped inhibitory control, and thus a hypersensitivity to reward. Perturbations during adolescence can alter the developmental trajectory of the brain, resulting in long-term alterations in reward-associated behaviors. This review highlights recent developments in our understanding of how neural circuits, pubertal hormones, and environmental factors contribute to adolescent-typical reward-associated behaviors with a particular focus on sex differences, the medial prefrontal cortex, social reward, social isolation, and drug use. We then introduce a new approach that makes use of natural adaptations of seasonally breeding species to investigate the role of pubertal hormones in adolescent development. This research has only begun to parse out contributions of the many neural, endocrine, and environmental changes to the heightened reward sensitivity and increased vulnerability to mental health disorders that characterize this life stage.


Assuntos
Comportamento do Adolescente/fisiologia , Adolescente , Psicologia do Adolescente , Recompensa , Desenvolvimento do Adolescente , Feminino , Hormônios/fisiologia , Humanos , Masculino , Puberdade/fisiologia , Puberdade/psicologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/psicologia
20.
Physiol Behav ; 170: 93-99, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28038406

RESUMO

Beta-hydroxy-beta-methylbutyrate (HMB) is commonly supplemented to maintain muscle in elderly and clinical populations and has potential as a nootropic. Previously, we have shown that in both male and female rats, long-term HMB supplementation prevents age-related dendritic shrinkage within the medial prefrontal cortex (mPFC) and improves cognitive flexibility and working memory performance that are both age- and sex-specific. In this study, we further explore the cognitive effects by assessing visuospatial learning and memory with the Morris water maze. Female rats were ovariectomized at 11months of age to model human menopause. At 12months of age, male and female rats received relatively short- or long-term (1- or 7-month) dietary HMB (450mg/kg/dose) supplementation twice a day prior to testing. Spatial reference learning and memory was assessed across four days in the water maze with four trials daily and a probe trial on the last day. Consistent with previous work, there were age-related deficits in water maze performance in both sexes. However, these deficits were ameliorated in HMB-treated males during training and in both sexes during probe trial performance. Thus, HMB supplementation prevented the age-related decrement in water maze performance, especially in male rats.


Assuntos
Envelhecimento/efeitos dos fármacos , Deficiências da Aprendizagem/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Nootrópicos/farmacologia , Valeratos/farmacologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Feminino , Deficiências da Aprendizagem/fisiopatologia , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Testes Neuropsicológicos , Ovariectomia , Ratos Long-Evans , Caracteres Sexuais , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...